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Abstract

It is generally believed that the first perfect magic cube was presented by
Frost in 1866. We show that the first such cube, of order 7, was actually already
published in the year 1833 by Ferdinand Julius Brede alias de Fibre. We describe
a possible construction method and give some information about the life of the
discoverer. Additionally, we correct a misinterpretation of Andrew H. Frost’s
perfect magic cube of order 9 found in 1878.
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1 Introduction
Magic cubes are 3-dimensional analogues of magic squares. They have already been
discussed by Fermat, but the first examples of perfect magic cubes only date, as far as
has been known until now, from the second half of the 18th century. For the history of
magic cubes, see Boyer (2003) and Heinz (2004).

A magic cube of order m > 1 is an m×m×m-array of the numbers from 1 to m3

such that the elements of each of the m2 rows, m2 columns, m2 pillars, and four space
diagonals all have the same magic sum, which is S = 1

2
m · (m3 + 1). A magic cube is
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called perfect if the sum of m numbers along any straight line equals the magic sum.
A property often considered in connection with magic cubes is pandiagonality, i. e. all
broken diagonals also have the same magic sum.

Until now, it was believed that the first known perfect magic cube was found by
Frost (1866). It had order 7. In this paper, we present an earlier such cube that was
published in 1833 by a certain “de Fibre” alias F. J. Brede. In the following, we will
first discuss Brede’s cube of order 7 and compare it to Frost’s. We will also briefly give
some information on who Brede was. In the last part of the article, we will discuss the
earliest perfect magic cubes of order 9. This will include a new interpretation of a cube
that Frost presented in 1878.

2 de Fibre’s alias Brede’s perfect magic cube of
order 7 from 1833

In the course of researches for potential additional material for his Historical Dictionary
of Mathematical Terms, one of the authors was looking for occurrences of the German
term Zauberwürfel, which is an alternative to the more common magischer Würfel. He
found an obscure German magazine called Iduna, which was published in Hamburg
and was directed at “young people of both sexes”, as its subtitle indicates. In this
magazine (vol. 3, issues no. 4 and following, 1833), a certain “de Fibre” published, in
weekly instalments, a perfect magic cube of order 7.

He also went on to publish a booklet on magic squares and magic cubes (Brede
1834). In the booklet, another perfect magic cube of order 7 is presented and it is
discussed how such cubes can be constructed. The treatise has apparently never been
mentioned in the mathematical literature; it is merely listed in a bibliography by Ahrens
(1918, p. 389).

De Fibre’s cube from 1833 is shown in tables 1 to 4. The illustration shows the 7
plane sections through the cube perpendicular to the z-axis. The x-axis runs horizontally
from left to right for each square and the y-axis runs vertically from top to bottom. The
position of a cell of the cube is described by its coordinates (x, y, z) with 1 ≤ x, y, z ≤ 7.
w(x, y, z) refers to the number in the cell (x, y, z).
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Table 1: Layers 1 and 2

322 29 86 143 151 208 265

87 144 152 209 266 316 30

153 210 260 317 31 88 145

261 318 32 89 146 154 204

33 90 147 148 205 262 319

141 149 206 263 320 34 91

207 264 321 35 85 142 150

100 157 214 271 328 42 92

215 272 329 36 93 101 158

323 37 94 102 159 216 273

95 103 160 217 267 324 38

161 211 268 325 39 96 104

269 326 40 97 105 155 212

41 98 99 156 213 270 327

Table 2: Layers 3 and 4

277 334 48 56 106 163 220

49 50 107 164 221 278 335

108 165 222 279 336 43 51

223 280 330 44 52 109 166

331 45 53 110 167 224 274

54 111 168 218 275 332 46

162 219 276 333 47 55 112

62 119 169 226 283 340 5

170 227 284 341 6 63 113

285 342 7 57 114 171 228

1 58 115 172 229 286 343

116 173 230 287 337 2 59

231 281 338 3 60 117 174

339 4 61 118 175 225 282

Table 3: Layers 5 and 6

232 289 297 11 68 125 182

298 12 69 126 176 233 290

70 120 177 234 291 299 13

178 235 292 300 14 64 121

293 301 8 65 122 179 236

9 66 123 180 237 294 295

124 181 238 288 296 10 67

17 74 131 188 245 246 303

132 189 239 247 304 18 75

240 248 305 19 76 133 183

306 20 77 127 184 241 249

71 128 185 242 250 307 21

186 243 251 308 15 72 129

252 302 16 73 130 187 244

Table 4: Layer 7

194 202 259 309 23 80 137

253 310 24 81 138 195 203

25 82 139 196 197 254 311

140 190 198 255 312 26 83

199 256 313 27 84 134 191

314 28 78 135 192 200 257

79 136 193 201 258 315 22
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2.1 Properties of the cube
The 7 · 7 · 7 = 343 cells of the cube contain all integers from 1 to 343. The middle
number 172 is in the centre of the cube.

In each orthogonal section, the sum of the 7 numbers in each row and each column
is 1204 (21 · 14 = 294 sums in total). In each orthogonal section, the sum of the 7
numbers in each of the two diagonals is 1204 (21 · 2 = 42 sums in total).

The 4 space diagonals (often called triagonals) run through the centre and two
corners of the cube. The sum of the numbers in the space diagonals is also 1204.

These properties represent the minimum requirement for a perfect cube. However,
the degree of perfection of de Fibre’s cube is higher.

De Fibre’s cube is symmetrical (associated), i. e., the sum of the numbers from two
cells whose connecting line runs through the centre of the cube and is bisected by the
centre is 344.

De Fibre’s cube is also pandiagonal, i. e., in each orthogonal section, the 7 numbers
of each broken diagonal add up to 1204.

An even higher degree of perfection would be achieved if the broken triagonals were
also magic. There are indeed cubes of order 7 that have this property, but they are not
perfect, because some diagonals are not magic.

2.2 Construction principle of the cube
De Fibre constructed his cube using the superposition method. This method was
found for magic squares as early as the 14th century by the Indian Narayana and later
described in detail by Leonhard Euler. Whether de Fibre knew about it or re-invented
it is not known (Brede 1834, p. 3 himself indicated that he did not actually read Euler;
he only seems to have known that Euler dealt with magic squares). In any case, de
Fibre transferred this method to three dimensions. He composed the cube from three
components. Each component cube has the same dimensions as the cube he was looking
for and contains the 7 characters a, b, c, d, e, f and g, each of which appears 49 times.
All characters from a to g occur in each row, column, column and diagonal (including
all broken diagonals). Ideally, this would also apply to the broken space diagonals.
However, the cube has 8 corners and only 7 characters are available, so two corners
contain the same character. The line connecting these two corners therefore cannot
contain all 7 characters. This is the reason why in de Fibre’s cube not all of the broken
space diagonals are magic.

� The construction principle is easier to recognize if each number is reduced by 1
and represented with the digits from 0 to 6 in the base-7 positional notation.
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Table 5: Layer z=1 (left: C; middle: B; right: A)

6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3

3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0

6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3
0 1 2 3 4 5 6
3 4 5 6 0 1 2

Table 6: Layer z=2

2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6

0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4

1 2 3 4 5 6 0
4 5 6 0 1 2 3
0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4

Table 7: Layer z=3

5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2

4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1

3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3
0 1 2 3 4 5 6

Table 8: Layer z=4

1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5

1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5

5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3
0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1

Table 9: Layer z=5

4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1

5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2

0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3

Table 10: Layer z=6

0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4

2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6

2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3
0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5

Table 11: Layer z=7

3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0

6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3

4 5 6 0 1 2 3
0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0

5



2.3 A formula for de Fibre’s cube
In the above illustration, the digits in the 3 positions are each shown in a separate cube.
Instead of de Fibre’s letters, we here use the digits from 0 to 6. The set of numbers
{0, 1, 2, ...6} forms the residue field modulo 7. In the following, all calculations are to
be carried out modulo 7. For example, 6 + 4 = 3 (7 must be subtracted or added until
a number from 0 to 6 is found).

For component A, let a(x, y, z) be the digit in cell (x, y, z). Similarly, we define
b(x, y, z) and c(x, y, z). Each of the components A, B and C must be centrally sym-
metrical and therefore contain the number 3 in the centre: a(4, 4, 4) = b(4, 4, 4) =

c(4, 4, 4) = 3.
The three components of de Fibre’s cube have the following property, as do all other

historical perfect 7×7×7 cubes. The difference between the values of two neighbouring
cells with a common side have the same value modulo 7 for a certain component A, B
or C and a certain direction x, y, z. In each component, the value of a cell increases by
1 in the x-direction. This is also true if you consider (1, y, z) to be the neighbouring
cell of (7, y, z). Note that 6 + 1 = 0 mod 7 applies.

We can describe the increases in the x-direction by dxA, dxB and dxC , all of which
have the value 1.

In the y-direction we find: dyA = 3, dyB = 2, dyC = 2. In the z-direction, the cells
with the same x- and y-values in the individual squares must be traversed from top to
bottom: dzA = 2, dzB = 4, dzC = 3.

For all diagonals to be magic, the following must apply to each cube component:

dx+ dy 6= 0 mod 7, dx− dy 6= 0 mod 7

dx+ dz 6= 0 mod 7, dx− dz 6= 0 mod 7

dy + dz 6= 0 mod 7, dy − dz 6= 0 mod 7

The following matrix can therefore be used to describe the cube:

M =

dxA dyA dzA
dxB dyB dzB
dxC dyC dzC


In addition, a translation vector t is required to ensure that the number 3 is in the

centre. t can be calculated from M . The cube is therefore uniquely described by M .

We set

3

3

3

 = M

4

4

4

+ t mod 7.

t is equal to the zero vector and can therefore be omitted if the sum of the three
numbers in each row of the matrix is equivalent to 6 modulo 7. Collison’s cube has this
property (see section 2.4).

The formula for de Fibre’s cube is w(x, y, z) = 49c+ 7b+ a+ 1 witha

b

c

 ≡

1 3 2

1 2 4

1 2 3

x

y

z

+

0

3

0

mod 7 and 0 ≤ a, b, c ≤ 6.
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2.4 Further pandiagonal associated magic 7× 7× 7-cubes

de Fibre (1834):

2 4 1

1 5 4

1 5 3

 with t =

3

5

2



Frost (1866):

1 5 3

1 3 5

1 2 3

 with t =

2

2

0



Langman (1962):

3 1 2

2 1 4

2 1 3

 with t =

0

3

0



Benson & Jacoby (1981):

4 5 6

2 1 4

6 3 2

 with t =

6

3

1



Collison (1990):

3 1 2

2 3 1

1 2 3

 with t =

0

0

0



Campbell (2008):

4 5 6

5 6 4

6 4 5

 with t =

6

6

6



Breedijk (2013 ?):

1 4 2

1 3 2

1 3 5

 with t =

3

0

2



The equations that Collison presents for his cube are probably the most compact
description of a perfect magic cube:

U = 3x+ y + 2z mod 7
T = 2x+ 3y + z mod 7
H = x+ 2y + 3z mod 7

where N = 49H + 7T + U + 1.

2.5 Differences between the cubes of Frost (1866) and de Fibre
(1833)

For a simpler geometric description, the coordinate axes shall run through the centres
of the cubes in the following. A comparison of the cubes yields:

• Component A of Frost = de Fibre’s component B with 180◦ rotation around the
x-axis
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• Component B of Frost = de Fibre’s component A with reflection on the xy-plane

• Component C of Frost = de Fibre’s component C

The cubes are very similar, but it is unlikely that Frost copied from de Fibre. The
construction method seems too obvious.

For comparison: Langman’s cube is obtained from de Fibre’s cube by simply
swapping the x and y axes.

3 Ferdinand Julius Brede
“de Fibre” is a pseudonym made up of “F. J. Brede” (with I = J), the full name being
Ferdinand Julius Brede. The little that is known about Julius Brede was summarized
by Schmidt (1851, p. 1010), who remarks that Brede was reluctant to give information
about his life. According to Schmidt, Brede was born in 1800 in Stettin (today Szczecin,
Poland) and died on December 15, 1849, in Altona, leaving behind his wife Laura (née
Masdorff) and three children; a fourth child was born after his death. Schmidt also
remarks that Brede was an accountant and lists some of his publications. Overall,
Schmidt gives the fullest account of Brede, but supplementary information can be found
in church books and other sources.

According to the church books of Stettin (St. Jakobi), Ferdinand Julius Brede was
born on May 18, 1800, as the eighth of nine children of Johann Christian Brede (1755-
1834) and his wife Johanne Charlotte Julie Rauch (1765–1854). Julius’ father came
from Prenzlau, Brandenburg, and became a citizen of Stettin in 1781; he was a wine
merchant and freemason and later served as Danish consul.

In 1824, Julius Brede is listed for the first time in the address book of Altona,
now part of Hamburg. He worked there as an accountant for the rest of his life. On
November 18, 1838, he married, also in Altona, the 19-year old “Laura Masdorff”, who
was actually baptized as Eleonore Catharina Margaretha Beutel. She was born on July
26, 1819, in Ober-Schmitten, Nidda. Why she later assumed the name Masdorff is
unclear. The couple had five children altogether, one of which died early on. The two
oldest children, Alma and Albert, later emigrated to Chile, where descendents of Brede
still live.

Brede also began to publish chess compositions, which later led to a book on the
game (Brede [1844]). His compositions were printed in various European magazines.
He also devised a stenographical system (Brede 1827). Additionally, he wrote a number
of poems, which were published in various magazines.

Among his more bizarre publications is a treatise on the Earth (Brede 1837), in
which he claimed, according to the astronomer Heinrich Christian Schumacher (Peters
1863, p. 74), that the Earth was hollow inside. In a letter to Gauß, Schumacher described
Brede as an “eccentric genius ... who writes about everything without understanding
anything.” However, Brede certainly did understand how to construct magic cubes.
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4 Frost’s perfect magic cube of order 9 from 1878
The first known perfect magic cube of order 9 has long been attributed to Planck (1905).
However, a new analysis of Frost (1878) shows that the first such cube was actually
found by Frost.

The magic 9× 9× 9-cube from Frost’s article in The Quarterly Journal of Pure and
Applied Mathematics (Frost 1878, pp. 93ff.) has been misinterpreted by experts. Heinz
(2004, p. 116), Hendricks (1992, p. 404) and others write that Frost’s 9×9×9-cube does
not consist of consecutive numbers and is therefore not perfect. Frost (1878, p. 110)
writes in his article: “... the numbers of nine parallel sections are given at W, and in
the Nonary scale as exhibiting the order of the three digits ...”

In the presentation in Table W, he uses the base-9 positional notation. Then, of
course, it would be good to reduce all numbers by one and use the numbers from (000)9
to (888)9. To avoid this reduction, Frost takes an unusual measure. As is usual in base-9
notation, he uses the digits 0 to 8 for the highest position with the value 92 = 81 and the
middle position with the value 9. However, Frost increases the last digit by 1 and thus
uses the digits from 1 to 9. In total, his number notations then run from “001” to “889”
(without the notations “xx0” and “x9x”). However, this unconventional representation
can easily be converted into the decimal system: (abc)Frost = 81a+ 9b+ c.

If Frost’s representation is converted into the decimal system, the cube contains all
numbers from 1 to 93 = 729, so it is normal. In addition, it is perfect in every respect:
not only all rows, columns, pillars, diagonals and triagonals but also all broken diagonals
and triagonals are magic, and the cube is also centrally symmetrical (associated). For
the representations of Frost’s cube, see Trump (2024).

It is not unusual to represent cubes of order 9 in the positional notation with base
9. Benson and Jacoby do the same with their perfect 9× 9× 9-cube. A representation
of the cube in the decimal system cannot be found in their book Magic Cubes: New
Recreations from 1981. Their cube contains the consecutive numbers from 0 to (888)9
because, unlike Frost, they do not increase the last digit by 1. Nobody would think of
saying that Benson and Jacoby’s cube is not normal.

Frost’s three-dimensional cube model from the Whipple Museum in Cambridge does
not show two different cubes at the front and back, as assumed. They are exactly the
same cubes, just written in different ways. One cube is rotated by 180◦ around the
z-axis, so the corresponding numbers are opposite each other on the same mark.

In sum, in his article from 1878 Andrew H. Frost published an associated pandiagonal
and pantriagonal magic 9× 9× 9-cube. Until now, it was thought that Planck (1905)
was the first who found such a magic cube.
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