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Abstract

It is generally believed that the first perfect magic cube was presented by
Frost in 1866. We show that the first such cube, of order 7, was actually already
published in the year 1833 by Ferdinand Julius Brede alias de Fibre. We describe
a possible construction method and give some information about the life of the
discoverer. Additionally, we correct a misinterpretation of Andrew H. Frost’s
perfect magic cube of order 9 found in 1878.
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Ferdinand Julius Brede

Frost’s perfect magic cube of order 9 from 1878

1 Introduction
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Magic cubes are 3-dimensional analogues of magic squares. They have already been
discussed by Fermat, but the first examples of perfect magic cubes only date, as far as
has been known until now, from the second half of the 18th century. For the history of
magic cubes, see Boyer (2003) and Heinz (2004).
A magic cube of order m > 1 is an m x m x m-array of the numbers from 1 to m?

such that the elements of each of the m? rows, m? columns, m? pillars, and four space
diagonals all have the same magic sum, which is S = $m - (m® 4+ 1). A magic cube is



called perfect if the sum of m numbers along any straight line equals the magic sum.
A property often considered in connection with magic cubes is pandiagonality, i.e. all
broken diagonals also have the same magic sum.

Until now, it was believed that the first known perfect magic cube was found by
Frost (1866). It had order 7. In this paper, we present an earlier such cube that was
published in 1833 by a certain “de Fibre” alias F. J. Brede. In the following, we will
first discuss Brede’s cube of order 7 and compare it to Frost’s. We will also briefly give
some information on who Brede was. In the last part of the article, we will discuss the
earliest perfect magic cubes of order 9. This will include a new interpretation of a cube
that Frost presented in 1878.

2 de Fibre’s alias Brede’s perfect magic cube of
order 7 from 1833

In the course of researches for potential additional material for his Historical Dictionary
of Mathematical Terms, one of the authors was looking for occurrences of the German
term Zauberwiirfel, which is an alternative to the more common magischer Wiirfel. He
found an obscure German magazine called Iduna, which was published in Hamburg
and was directed at “young people of both sexes”, as its subtitle indicates. In this
magazine (vol. 3, issues no. 4 and following, 1833), a certain “de Fibre” published, in
weekly instalments, a perfect magic cube of order 7.

He also went on to publish a booklet on magic squares and magic cubes (Brede
1834). In the booklet, another perfect magic cube of order 7 is presented and it is
discussed how such cubes can be constructed. The treatise has apparently never been
mentioned in the mathematical literature; it is merely listed in a bibliography by Ahrens
(1918, p. 389).

De Fibre’s cube from 1833 is shown in tables 1 to 4. The illustration shows the 7
plane sections through the cube perpendicular to the z-axis. The z-axis runs horizontally
from left to right for each square and the y-axis runs vertically from top to bottom. The
position of a cell of the cube is described by its coordinates (x,y, z) with 1 < z,y,z < 7.
w(zx,y, z) refers to the number in the cell (z,y, 2).



Table 1: Layers 1 and 2

3221 29 | 86 | 143 | 151 | 208 | 265 100 | 157 | 214 | 271 | 328 | 42 | 92
87 | 144 | 152 | 209 | 266 | 316 | 30 21512721329 | 36 | 93 | 101 | 158
153|210 | 260 | 317 | 31 | 88 | 145 3231 37 | 94 | 102 | 159 | 216 | 273
261 | 318 | 32 | 89 | 146 | 154 | 204 95 | 103 | 160 | 217 | 267 | 324 | 38
33 | 90 | 147 | 148 | 205 | 262 | 319 161 | 211268 | 325 | 39 | 96 | 104
141 | 149 | 206 | 263 | 320 | 34 | 91 269 | 326 | 40 | 97 | 105 | 155 | 212
207 | 264 | 321 | 35 | 85 | 142 | 150 41 | 98 | 99 | 156 | 213 | 270 | 327
Table 2: Layers 3 and 4
277|334 | 48 | 56 | 106 | 163 | 220 62 | 119|169 | 226 | 283 | 340 | 5
49 | 50 | 107 | 164 | 221 | 278 | 335 170 | 227 {284 | 341 | 6 | 63 | 113
108 | 165 | 222 | 279 | 336 | 43 | 51 2851342 7 | 57 | 114|171 | 228
2231280 | 330 | 44 | 52 | 109 | 166 1 | B8 | 115 | 172 | 229 | 286 | 343
331 | 45 | 53 | 110 | 167 | 224 | 274 116 | 173 {230 | 287 | 337 | 2 | 59
54 | 111 | 168 | 218 | 275 | 332 | 46 23112811338 | 3 | 60 | 117|174
162 | 219 | 276 | 333 | 47 | 55 | 112 339 4 | 61 | 118 | 175|225 | 282
Table 3: Layers 5 and 6
2321289 297 | 11 | 68 | 125|182 17 | 74 | 131 | 188 | 245 | 246 | 303
298 | 12 | 69 | 126 | 176 | 233 | 290 132 | 189 | 239 | 247 [ 304 | 18 | 75
70 | 120 | 177 | 234 | 291 | 299 | 13 240 1248 | 305 | 19 | 76 | 133 | 183
178 1235(292 | 300 | 14 | 64 | 121 306 | 20 | 77 | 127 | 184 | 241 | 249
293 1301 | 8 | 65 | 122|179 | 236 71 | 128 | 185 | 242 | 250 | 307 | 21
9 | 66 | 123 | 180 | 237 | 294 | 295 186 | 243 | 251 | 308 | 15 | 72 | 129
124 | 181 | 238 | 288 | 296 | 10 | 67 2521302 | 16 | 73 | 130 | 187 | 244
Table 4: Layer 7
194 1202|259 | 309 | 23 | 80 | 137
253 | 310 | 24 | 81 | 138|195 | 203
25 | 82 | 139|196 | 197 | 254 | 311
140 | 190 | 198 | 255 | 312 | 26 | 83
199 1256 | 313 | 27 | 84 | 134 | 191
314 | 28 | 78 | 135|192 | 200 | 257
79 | 136 | 193 | 201 | 258 | 315 | 22




2.1 Properties of the cube

The 7-7-7 = 343 cells of the cube contain all integers from 1 to 343. The middle
number 172 is in the centre of the cube.

In each orthogonal section, the sum of the 7 numbers in each row and each column
is 1204 (21 - 14 = 294 sums in total). In each orthogonal section, the sum of the 7
numbers in each of the two diagonals is 1204 (21 - 2 = 42 sums in total).

The 4 space diagonals (often called triagonals) run through the centre and two
corners of the cube. The sum of the numbers in the space diagonals is also 1204.

These properties represent the minimum requirement for a perfect cube. However,
the degree of perfection of de Fibre’s cube is higher.

De Fibre’s cube is symmetrical (associated), i.e., the sum of the numbers from two
cells whose connecting line runs through the centre of the cube and is bisected by the
centre is 344.

De Fibre’s cube is also pandiagonal, i.e., in each orthogonal section, the 7 numbers
of each broken diagonal add up to 1204.

An even higher degree of perfection would be achieved if the broken triagonals were
also magic. There are indeed cubes of order 7 that have this property, but they are not
perfect, because some diagonals are not magic.

2.2 Construction principle of the cube

De Fibre constructed his cube using the superposition method. This method was
found for magic squares as early as the 14th century by the Indian Narayana and later
described in detail by Leonhard Euler. Whether de Fibre knew about it or re-invented
it is not known (Brede 1834, p. 3 himself indicated that he did not actually read Euler;
he only seems to have known that Euler dealt with magic squares). In any case, de
Fibre transferred this method to three dimensions. He composed the cube from three
components. Each component cube has the same dimensions as the cube he was looking
for and contains the 7 characters a, b, ¢, d, e, f and g, each of which appears 49 times.
All characters from a to g occur in each row, column, column and diagonal (including
all broken diagonals). Ideally, this would also apply to the broken space diagonals.
However, the cube has 8 corners and only 7 characters are available, so two corners
contain the same character. The line connecting these two corners therefore cannot
contain all 7 characters. This is the reason why in de Fibre’s cube not all of the broken
space diagonals are magic.

The construction principle is easier to recognize if each number is reduced by 1
and represented with the digits from 0 to 6 in the base-7 positional notation.



1 (left: C; middle: B; right: A)

Table 5: Layer z
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Table 6: Layer z
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Table 7: Layer z
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Table 9: Layer z
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Table 10: Layer z=6
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Table 11: Layer z
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2.3 A formula for de Fibre’s cube

In the above illustration, the digits in the 3 positions are each shown in a separate cube.
Instead of de Fibre’s letters, we here use the digits from 0 to 6. The set of numbers
{0,1,2,...6} forms the residue field modulo 7. In the following, all calculations are to
be carried out modulo 7. For example, 6 + 4 = 3 (7 must be subtracted or added until
a number from 0 to 6 is found).

For component A, let a(x,y, z) be the digit in cell (z,y,z). Similarly, we define
b(x,y,z) and ¢(x,y, z). Fach of the components A, B and C' must be centrally sym-
metrical and therefore contain the number 3 in the centre: a(4,4,4) = b(4,4,4) =
c(4,4,4) = 3.

The three components of de Fibre’s cube have the following property, as do all other
historical perfect 7 x 7 x 7 cubes. The difference between the values of two neighbouring
cells with a common side have the same value modulo 7 for a certain component A, B
or C' and a certain direction z, y, z. In each component, the value of a cell increases by
1 in the z-direction. This is also true if you consider (1,y, z) to be the neighbouring
cell of (7,y, z). Note that 6 + 1 = 0 mod 7 applies.

We can describe the increases in the z-direction by dx 4, dxg and dx¢, all of which
have the value 1.

In the y-direction we find: dys = 3, dyp = 2, dyc = 2. In the z-direction, the cells
with the same z- and y-values in the individual squares must be traversed from top to
bottom: dzy = 2, dzgp =4, dzc = 3.

For all diagonals to be magic, the following must apply to each cube component:

dx + dy # 0 mod 7,dx — dy # 0 mod 7

dr+dz# 0mod 7,dx — dz # 0 mod 7
dy +dz # 0 mod 7,dy — dz # 0 mod 7

The following matrix can therefore be used to describe the cube:

dz A dy A dz A
M = dx B dyB dZB
dl’c dyc dZC
In addition, a translation vector t is required to ensure that the number 3 is in the
centre. t can be calculated from M. The cube is therefore uniquely described by M.

3 4
Weset |3 =M (4] +¢tmod?7.
3 4

t is equal to the zero vector and can therefore be omitted if the sum of the three
numbers in each row of the matrix is equivalent to 6 modulo 7. Collison’s cube has this
property (see section 2.4).

The formula for de Fibre’s cube is w(z,y, z) = 49¢ + 7b + a + 1 with

a 1 3 2 x 0
bl=1(1 2 4 y|+ 3] mod7and0<a,b c<6.
c 1 2 3 z 0



2.4 Further pandiagonal associated magic 7 x 7 x 7-cubes

2 41 3
de Fibre (1834): 1 5 4 with ¢t = D
15 3 2
15 3 2
Frost (1866): 1 35 with t= |2
1 2 3 0
3 1 2 0
Langman (1962): 2 1 4 with t= [3
21 3 0
4 5 6 6
Benson & Jacoby (1981)[ 2 1 4 with t= |3
6 3 2 1
3 1 2 0
Collison (1990): 2 31 with ¢= [0
1 2 3 0
4 5 6 6
Campbell (2008): 5 6 4 with t= |6
6 4 5 6
1 4 2 3
Breedijk (2013 7): 1 3 2 with t= [0
1 35 2

The equations that Collison presents for his cube are probably the most compact
description of a perfect magic cube:

U=3z+y+22mod7

T=2r+3y+zmod7

H=24+2y+32mod 7
where N =49H + 7T+ U + 1.

2.5 Differences between the cubes of Frost (1866) and de Fibre
(1833)

For a simpler geometric description, the coordinate axes shall run through the centres
of the cubes in the following. A comparison of the cubes yields:

e Component A of Frost = de Fibre’s component B with 180° rotation around the
T-axis



o Component B of Frost = de Fibre’s component A with reflection on the zy-plane

e Component C of Frost = de Fibre’s component C

The cubes are very similar, but it is unlikely that Frost copied from de Fibre. The
construction method seems too obvious.

For comparison: Langman’s cube is obtained from de Fibre’s cube by simply
swapping the z and y axes.

3 Ferdinand Julius Brede

“de Fibre” is a pseudonym made up of “F. J. Brede” (with I = J), the full name being
Ferdinand Julius Brede. The little that is known about Julius Brede was summarized
by Schmidt (1851, p. 1010), who remarks that Brede was reluctant to give information
about his life. According to Schmidt, Brede was born in 1800 in Stettin (today Szczecin,
Poland) and died on December 15, 1849, in Altona, leaving behind his wife Laura (née
Masdorft) and three children; a fourth child was born after his death. Schmidt also
remarks that Brede was an accountant and lists some of his publications. Overall,
Schmidt gives the fullest account of Brede, but supplementary information can be found
in church books and other sources.

According to the church books of Stettin (St. Jakobi), Ferdinand Julius Brede was
born on May 18, 1800, as the eighth of nine children of Johann Christian Brede (1755-
1834) and his wife Johanne Charlotte Julie Rauch (1765-1854). Julius’ father came
from Prenzlau, Brandenburg, and became a citizen of Stettin in 1781; he was a wine
merchant and freemason and later served as Danish consul.

In 1824, Julius Brede is listed for the first time in the address book of Altona,
now part of Hamburg. He worked there as an accountant for the rest of his life. On
November 18, 1838, he married, also in Altona, the 19-year old “Laura Masdorft”, who
was actually baptized as Eleonore Catharina Margaretha Beutel. She was born on July
26, 1819, in Ober-Schmitten, Nidda. Why she later assumed the name Masdorff is
unclear. The couple had five children altogether, one of which died early on. The two
oldest children, Alma and Albert, later emigrated to Chile, where descendents of Brede
still live.

Brede also began to publish chess compositions, which later led to a book on the
game (Brede [1844]). His compositions were printed in various European magazines.
He also devised a stenographical system (Brede 1827). Additionally, he wrote a number
of poems, which were published in various magazines.

Among his more bizarre publications is a treatise on the Earth (Brede 1837), in
which he claimed, according to the astronomer Heinrich Christian Schumacher (Peters
1863, p. 74), that the Earth was hollow inside. In a letter to Gaufl; Schumacher described
Brede as an “eccentric genius ... who writes about everything without understanding
anything.” However, Brede certainly did understand how to construct magic cubes.



4 Frost’s perfect magic cube of order 9 from 1878

The first known perfect magic cube of order 9 has long been attributed to Planck (1905).
However, a new analysis of Frost (1878) shows that the first such cube was actually
found by Frost.

The magic 9 X 9 x 9-cube from Frost’s article in The Quarterly Journal of Pure and
Applied Mathematics (Frost 1878, pp. 93ff.) has been misinterpreted by experts. Heinz
(2004, p. 116), Hendricks (1992, p. 404) and others write that Frost’s 9 x 9 x 9-cube does
not consist of consecutive numbers and is therefore not perfect. Frost (1878, p. 110)

44

writes in his article: “... the numbers of nine parallel sections are given at W, and in
the Nonary scale as exhibiting the order of the three digits ...”

In the presentation in Table W, he uses the base-9 positional notation. Then, of
course, it would be good to reduce all numbers by one and use the numbers from (000)g
to (888)g. To avoid this reduction, Frost takes an unusual measure. As is usual in base-9
notation, he uses the digits 0 to 8 for the highest position with the value 92 = 81 and the
middle position with the value 9. However, Frost increases the last digit by 1 and thus
uses the digits from 1 to 9. In total, his number notations then run from “001” to “889”
(without the notations “xx0” and “x9x”). However, this unconventional representation
can easily be converted into the decimal system: (abc)prost = 8la + 9b + c.

If Frost’s representation is converted into the decimal system, the cube contains all
numbers from 1 to 93 = 729, so it is normal. In addition, it is perfect in every respect:
not only all rows, columns, pillars, diagonals and triagonals but also all broken diagonals
and triagonals are magic, and the cube is also centrally symmetrical (associated). For
the representations of Frost’s cube, see Trump (2024).

It is not unusual to represent cubes of order 9 in the positional notation with base
9. Benson and Jacoby do the same with their perfect 9 x 9 x 9-cube. A representation
of the cube in the decimal system cannot be found in their book Magic Cubes: New
Recreations from 1981. Their cube contains the consecutive numbers from 0 to (888)g
because, unlike Frost, they do not increase the last digit by 1. Nobody would think of
saying that Benson and Jacoby’s cube is not normal.

Frost’s three-dimensional cube model from the Whipple Museum in Cambridge does
not show two different cubes at the front and back, as assumed. They are exactly the
same cubes, just written in different ways. One cube is rotated by 180° around the
z-axis, so the corresponding numbers are opposite each other on the same mark.

In sum, in his article from 1878 Andrew H. Frost published an associated pandiagonal
and pantriagonal magic 9 x 9 x 9-cube. Until now, it was thought that Planck (1905)
was the first who found such a magic cube.
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