
Proof of some conjectures related to the enumeration of magic series 

of arbitrary dimensions 
 

Let     and     be integers, and let        be the number of partitions of ⌊        ⌋ into 

  distinct positive integers each less than or equal to  .  We use the notation ⌊ ⌋ to represent the 

largest integer which is less than or equal to   (   ). 

More formally,        is the number of solutions              of the system 

{  
              

           ⌊        ⌋
 

Obviously, if     then         , so from now on we will assume that    . 

Note by the way that the value of        would not change if we would count the partitions of 

⌈        ⌉ instead, where ⌈ ⌉ represents the smallest integer which is greater than or equal to   

(   ).  This can be proved by considering the “complement” in the Ferrer diagram of the 

partitions.  Since we do not need this result here, we’ll just leave it at that. 

The form        is related to the enumeration of magic series of arbitrary dimensions, because, as 

can easily be verified, the number of magic series of dimension   and order   is equal to        .  

See for example http://www.trump.de/magic-squares/magic-series/hyper.htm. 

First we will prove, at least for the case that   is even, that        is a quasi-polynomial of degree 

    in  , and that its coefficient      of degree     is given by 

     
    

           
 

where      is the  -th term in the sequence defined in OEIS A099765.  The proof will be based on 

geometric concepts.  It will give a geometric interpretation of all the terms and factors appearing in 

the expanded formula obtained by substituting the above occurrence of      by the explicit 

summation formula given in OEIS A099765.  This is our main result. 

Next, we will also prove that, for the case that   is even and    , the period      of the quasi-

polynomial        in   is a divisor of       , where      is the  -th term in the sequence 

defined in OEIS A003418, so      is the least common multiple of the numbers in [ ]           . 

Finally we will prove, again assuming that   is even, that the coefficient      of degree     of 

the quasi-polynomial        is given by 

      
          

 
  

    

         
 

Note that this explains why, after the substitution                 as in 

http://www.trump.de/magic-squares/magic-series/formulae.htm, the coefficient of      is  . 

http://www.trump.de/magic-squares/magic-series/hyper.htm
http://www.trump.de/magic-squares/magic-series/formulae.htm


All of the above seems to be true if   is odd as well, but adaptations of the current proof would 

certainly be necessary.  It seems that only some minor modifications are sufficient to prove the case 

where both   and   are odd (admittedly, I have not yet written this out).  Actually this case is all we 

need if we are only interested in the application to magic series: the number of magic series of 

dimension   and order   is equal to        , and obviously      is odd if   is odd. 

 

Let’s start with the first part of the proof.  First, we perform the following substitution of variables: 

                  

The original system then becomes 

{  
                

                     ⌊        ⌋
 

The last equation is equivalent to 

           ⌊        ⌋           ⌊        ⌋ 

There is a 1-to-1 correspondence between the solutions of this system and the solutions of the 

original system, so        is also the number of solutions              of the new system 

{  
                

           ⌊        ⌋
 

This, by the way, proves that                , where        is the (symmetric) table 

defined in OEIS A067059. 

We will now continue to work with the system in the  -variables.  An alternative approach would be 

to work with the initial system in the  -variables, and to make use of Ehrhart-Macdonald reciprocity 

(which, by the way, we will use later in order to determine a formula for     ). 

From now on, we assume that   is fixed in advance and even. 

Using the last equation to eliminate    from the system, we obtain the reduced system 

{  

              

                      
                           

 

Subtracting the last two inequalities results in         , which reconfirms that the solution 

space is bounded. 

We will now make use of the following theorem (Ehrhart): 

 let   be an integer     matrix, let             be an integer vector, and let     be an 

integer parameter; 

 let          be   variables and            ; 

 consider the system       of   inequalities in the   variables        , and suppose that the 

solution space is bounded; 



 let      be the (finite) number of solutions                of this system; 

 let   be the (rational) polytope of all points   in    satisfying      (the above system with 

   ); this also means that     is the "dilated" polytope of all points   in    satisfying the 

original system      . 

Then the theorem states that 

      is a quasi-polynomial of degree   in  , called the Ehrhart quasi-polynomial of  ; 

 the coefficient of degree   of      is equal to the volume of  ; 

 the period of the quasi-polynomial is a divisor of the least common multiple of the denominators 

appearing in the coordinates of the vertices of   (all vertices of   have rational coordinates). 

The statement about the period implies that if all vertices of   have integer coordinates,      is an 

ordinary polynomial, which is then called the Ehrhart polynomial of  . 

We refer to the Wikipedia page http://en.wikipedia.org/wiki/Ehrhart_polynomial for some basic 

definitions and known properties about Ehrhart polynomials and quasi-polynomials, including 

Ehrhart-Macdonald reciprocity. 

Our last system in the  -variables is of the required form to apply the theorem, with       and 

     , and we have              . 

[Open question: are there perhaps more general versions of this theorem which would allow us also 

to deal with the case where   is odd?  Maybe this is trivial, but maybe it is not…] 

We want to find a formula for the coefficient      of      in       .  With       and 

      as before, we have                   , which shows that      is equal to the 

coefficient of      in     . 

So our next goal is to find the volume   of the      -dimensional rational polytope   defined by 

{  

              

                 
                    

 

setting     as required in the theorem. 

If we reintroduce variable    such that               , we see that in  -space this 

polytope is the orthogonal projection of the      -dimensional polytope defined by 

{  
              
              

 

onto the hyperplane     .  From now on, by "projection" we always mean: the orthogonal 

projection onto the hyperplane     . 

Next we consider the    polytopes obtained by replacing the set of inequalities            

by the set of inequalities obtained by permuting the order of the variables, in all    possible ways.  

These    polytopes have disjoint interiors.  Their projections also have disjoint interiors, and, 

because of the symmetry, they all have the same volume  . 

http://en.wikipedia.org/wiki/Ehrhart_polynomial


Now let    be the projection of the more symmetric (and thus simpler) polytope defined by 

{  
              
              

 

and let    be its volume.     is the union of the    projected polytopes.  Since the    projected 

polytopes have disjoint interiors, and since they all have the same volume  , we have        . 

We will now study the related parametric polytope      defined by 

{  
              
            

 

with    .  Note that      is empty if     or    , so the interesting case is      .  From 

now on we always assume that      . 

Let      be the face of      lying in the bounding hyperplane             , and let       

be its projection. 

We will use the notation      to denote volumes in an affine space of dimension  , so      means 

length,      means area, and so on for higher dimension.  This distinction may actually be overkill as 

the context should make clear which "volume" is intended in each case. 

We can now restate the above definitions of    and    as follows: 

           

                      
        

Summarizing, we found that the coefficient of degree     of        in   (  even) is equal to 

                
           

Note that, because of the orientation of the face     , 

        
      

           

  
 

Next, we will try to find a formula for the (parametric) volume of      valid for      . 

Consider the dilated unit  -simplex      defined by 

{  
            

            
 

It has one vertex in the origin, and   vertices on the bounding hyperplane             , 

each lying on one of the coordinate axes, at a distance   from the origin. 

For each subset   [ ]         , let    [ ]  , and let       be the polytope defined by 

{  

            

            

      [ ]   

       [ ]   

 



Note that some of the       may be empty, and that    [ ]      . 

Let      be the set of all such polytopes for the given values of   and  , so 

                 [ ]   

All the polytopes in      have disjoint interiors, and their union is the simplex     .  So the volume 

of      is equal to the sum of the volumes of all the polytopes in     . 

Let                   and       ∑         . 

In particular, we have    [ ]             and    [ ]            . 

Our next goal is to find an expression for      , and then to derive an expression for            

   [ ]  using the Möbius inversion theorem for the poset of subsets of [ ], see for example 

http://www.sfu.ca/~mdevos/notes/comb_struct/mobius.pdf, theorem 6.2. 

Because of the symmetry, it is clear that      , only depends on the cardinality of   (the actual 

numbers in   are of no importance). 

So let's assume, without loss of generality, that   [ ],       (assuming [ ]   ), so      . 

Going back to the above definitions we see that       is the volume of the polytope defined by 

{  

            

            

   [ ]   [ ]   
 

If       this polytope is empty, and its volume is  .  If      , this polytope is a dilated unit 

 -simplex with one vertex in the point            , with 

                      

and with   vertices on the bounding hyperplane             .  These   vertices are at the 

intersection of an edge through   and parallel to one of the   coordinate axes. 

Suppose that the edge parallel to axis    (     ) connects vertices   and  , then 

      ,        [ ]     

      ∑         , because   lies on the bounding hyperplane              

 the length       of the edge between   and   is      . 

If     then     , and the sum ∑          contains     terms    which are equal to  , and     

terms    which are equal to 1.  So           , and                        

       . 

If     then     , and the sum ∑          contains   terms    which are equal to  , and       

terms    which are equal to 1.  So             , and again                   

              . 

So in any case, the volume of this simplex       is always equal to             ⁄ . 

http://www.sfu.ca/~mdevos/notes/comb_struct/mobius.pdf


Conclusion, with      :                   ⁄  if      , and         if      . 

Next, we will apply a special case of the Möbius inversion theorem.  The Möbius inversion theorem 

for the poset of subsets of [ ] states that 

 if two functions   and   from the poset of subsets of [ ] to   (or  ) are defined such that 

   [ ]      ∑        , 

 then    [ ]      ∑                    

We can apply this theorem to our functions        and      , assuming   is fixed in advance: 

   [ ]       ∑                

   

 

and consequently, for   [ ]: 

   [ ]  ∑               

  [ ]

 

Now in this sum all the       are  , except the ones with       ], so        , and we have 

   [ ]  ∑               

  [ ]

       

 ∑        ∑      

  [ ]

     

 

    ⌊ ⌋

 

The value of       is the same for all   with the same cardinality |J|= , so all terms in the inner sum 

are identical.  The number of terms in the inner sum is equal to the number of subsets of [ ] with 

cardinality  , (
 
 ).  So we have 

   [ ]  ∑        (
 
 )

          

  

 

    ⌊ ⌋

 
 

  
∑     (

 
 
)       

⌊ ⌋

   

 

In the last step we replaced the free variable   by  , with      . 

Now we can combine this result with the results we found earlier: 

              [ ]  
 

  
∑     (

 
 
)       

⌊ ⌋

   

 

        
      

           

  
 

 

      
∑     (

 
 
)         

⌊ ⌋

   

 

Note that the variable S appears in the upper bound of the summations, so we have to be careful when 

taking the above derivative.  If   is not an integer, it is always possible to define an environment of   in 

which the upper bound ⌊ ⌋ of the summations remains constant, so we can just take the derivative of the 

summand.  If   is an integer, this is also true when taking the right derivative.  When taking the left 

derivative however, this is only true if we first change the upper bounds to ⌈ ⌉   .  This change in the 



formulas does not actually change the functions            and         
     .  This can be seen as 

follows.  Clearly, ⌈ ⌉    ⌊ ⌋, except when   is an integer.  But even when   is an integer, the upper 

bounds can still be replaced with ⌈ ⌉    (     ⌊ ⌋   ) without changing the functions, because the 

last term (  ⌊ ⌋   ) is then equal to 0 (in both summations), and can be dropped.  So both one-sided 

derivatives are the same, and thus equal to the (two-sided) derivative. 

Finally, 

          
           

 

            
∑     (

 
 
)          

   

   

 

Now, is   is even, the  -th term in the sequence defined in OEIS A099765 is 

     
 

 
∑     (

 
 
)          

   

   

 

Comparing this with our expression for  , we see that 

  
    

           
 

In other words, if   is even, then the coefficient      of      in        is given by 

     
    

           
 

This is the main result we wanted to prove, and agrees with the results found by Walter Trump 

(    ). 

 

Next, let’s proceed to the second part, and focus our attention to the period      of the quasi-

polynomial        in  .  We want to prove that if   is even and    ,      must be a divisor of 

      , where      is the least common multiple of the numbers in [ ]. 

We consider again the      -dimensional rational polytope   defined by 

{  

              

                 
                    

 

which we defined earlier in the context of the application of Ehrhart’s theorem. 

So far we did not use the last part of the theorem, which states that the period of the quasi-

polynomial is a divisor of the least common multiple of the denominators appearing in the  

coordinates of the vertices of   (all vertices of the polytope have rational coordinates). 

Now the question is: what are (the denominators appearing in) the coordinates of the vertices of  ? 



Since   is an      -dimensional polytope, each vertex is at the intersection of     faces of  , 

and its coordinates can be found by solving the set of equations of     of the bounding 

hyperplanes. 

The problems will become easier after performing the following linear transformation, which, 

although it deforms the polytope, preserves vertices and faces: 

  
     

  
                      

We also have      
  and      

    
      

  (         ), so it is clear that for any 

vertex, the denominators appearing in the    (       ) are divisors of the least common multiple 

of the denominators appearing in the   
 .  We will prove that the denominators appearing in the   

  of 

all the vertices are divisors of       .  From this it follows that the least common multiple of the 

denominators appearing in the   , over all the vertices, is a divisor of        as well, and 

consequently that      is a divisor of       . 

So using      
    

      
  (         ), we can rewrite the system as 

{  

    
    

        
 

   
         

         
     

       
         

        
         

 

To obtain a vertex (any of them), we must select     of these inequalities, which means that we 

must drop   of the     equations, replace inequalities by equalities, and solve the resulting linear 

system of     equations.  Note that not every selection would results in a vertex, because the 

point of intersection may fall outside  .  If we replace the inequalities by equalities in advance, we 

just have to select     equations from the following list of     equations (the first line [ ] 

represets     equations): 

  
               [ ]

   
         

         
     [ ]

       
         

        
         [ ]

 

If we select the     equations [ ], the solution is the origin, which is not a vertex (because of our 

assumption    ). 

Next, for those vertices where the two equations [ ] and [ ] are both selected, equation [ ] can be 

subtracted from [ ].  Assuming that we drop the two equations   
    and   

    (with     

[   ]), this results in the system 

{  

   [   ]          
   

  
    

        
   

       
         

        
         

 

After eliminating the variables appearing in the equations   
   , we arrive at the reduced system 

{  
  

    
   

       
         

         
 



The determinant of this linear system is                .  The denominators appearing in 

the coordinates   
  and   

  are divisors of the absolute value of the determinant          , and 

as a consequence are also divisors of       .  The other coordinates are all  , so there are no 

other denominators. 

Next, for those vertices where equation [ ] is selected, and equation [ ] is not selected, and 

assuming that we drop the equation   
    (with   [   ]), we arrive at the system 

{  
   [   ]        

   

   
         

         
     

 

After eliminating the variables appearing in the equations   
   , we are left with a single equation 

         
      

If     then   
             , and because     the denominator   is indeed a divisor of 

      . 

Otherwise we have        , so            , and because the equation shows 

that the denominator appearing in   
  is now a divisor of      , it will also be a divisor of 

      .  Again, the other coordinates are all  , so there are no other denominators. 

Finally, for those vertices where equation [ ] is selected, and equation [ ] is not selected, and 

assuming that we drop the equation   
    (with   [   ]), we arrive at the system 

{  
   [   ]        

   

       
         

        
         

 

After eliminating the variables appearing in the equations   
   , we are now left with the single 

equation 

       
          

The equation shows that the denominator appearing in   
  is now a divisor of     [   ], so it 

will also be a divisor of       .  As before, the other coordinates are all  , so there are no other 

denominators. 

Conclusion: assuming that   is even and    , we found that the denominators appearing in the   
  

of all the vertices are divisors of       .  So the least common multiple of the denominators 

appearing in the   , over all the vertices, is a divisor of        as well, and using Ehrhart’s theorem 

we may conclude that      is also a divisor of       . 

 

Finally, let’s proceed to the third part, and focus our attention to the second coefficient      of the 

quasi-polynomial        in  .  Assuming that   is even, as before, we will prove that 

      
          

 
 

Consider the following two systems we have encountered before in a slightly different form: 



{  
                
                   

      {  
                
                   

 

We already know that both systems have        solutions             . 

Now let   be the rational polytope defined by the system 

{  
              
              

 

Then the solutions of the first system are the points              belonging to the rational 

polytope             , and the solutions of the second system are the points           

   belonging to the interior of the rational polytope             . 

Note, by the way, that the number of points              on the boundary       of      is 

equal to                  ,    .  So we now know that this is also a quasi-polynomial 

in  , and we could easily derive a closed formula for the high order coefficient of this quasi-

polynomial (the coefficient of     ) from the known closed formulas for      and     . 

Next, to continue our proof, let      be the Ehrhart quasi-polynomial of  .  Then we have, looking at 

the first system, 

              

For the second system we must count only the interior points              in     .  According 

to the Ehrhart-Macdonald reciprocity theorem we know that 

                        

Comparing both expressions for       , we see that 

                        

Now let r         
            , where the coefficient   is still unknown.  We know that   

is not a periodic number, but a constant which is completely determined by the faces of the polytope 

 , as mentioned on the same Wikipedia page about Ehrhart (quasi-)polynomials.  We could use this 

fact to determine   geometrically, but this leads to rather lengthy calculations.  I actually did this, as 

an exercise, for the simple case    .  The faces turn out to be the 5 faces of a pyramid with a 

quadrilateral base, and with identical adjusted “volumes” (areas), despite their quite different 

shapes.  Note that the equation                reduces the dimension of the polytope by 

1. 

Next, if we substitute the general expression for      in the last equation, we find 

                                                  

The coefficient of      must be the same on both sides of the equation, so we have 

                            

Solving for   we get 



  
          

 
 

and consequently, 

          
    

          

 
       

                           
          

 
           

      
                   

          

 
       

So the coefficient of      is 

                 
          

 
  

                 

 
  

          

 
 

This explains why, after the substitution                , hence             , as in 

http://www.trump.de/magic-squares/magic-series/formulae.htm, the coefficient of      is always 

equal to  .  The proof is trivial of course: if we start from 

            
         

      

and replace   by           , we get 

                                         

          
                   

             
      

and the coefficient of      turns out to be 

                                           
          

 
   

In fact this is true for any substitution of the form               , so we could just as well 

have left out the second denominator  , i.e. take     instead of      . 

 

Dirk Kinnaes 
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