| Estimates of the number of magic squares, cubes, ... (hypercubes) |
| Multimagic squares |
| N(m) ≈ N~(m) = C~(m) · E(m) | with the approximation C~(m) = 0.185 · (m - 1) |
| Number N of bimagic squares | ||
| Order | What we estimated 2005 | What we know 2014 |
| 7 | 4 · 10-4 | N = 0 |
| 8 | 2 · 1007 | N = 26,158,848 |
| 9 | 1 · 1022 | N >> 1 |
| 10 | 2 · 1040 | N >> 1 |
| 11 | 3 · 1065 | N >> 1 |
| 12 | 4 · 1096 | N >> 1 |
| I assume: the smallest strictly pandiagonal bimagic squares are of order 15. |
| Number N of trimagic squares | ||
| Order | What we estimate | What we know |
| 11 | 6 · 10-34 | N = 0 |
| 12 | 1 · 10-7 | N >> 1 |
| 13 | 2 · 10-1 | ? |
| What is wrong with the trimagic order-12 estimate? |
| Es,t(12) ≈ 2.89 · 10125 · prow11 · pcol7 / 8 ≈ 2.4 · 107 |
| Back to the Table of Contents |